NEWS CENTER ·
武汉高中一对一
关注龙门尚学 关注辅导动态
当前位置: 首页 > 高中一对一辅导

证明矩阵相似的几种方法

来源:龙门尚学 时间:2022-02-24

判断特征值是否相等、判断行列式是否相等、判断迹是否相等、判断秩是否相等。两个矩阵相似充要条件是特征矩阵等价行列式因子相同不变,因子相同初等因子相同,且特征矩阵的秩相同,转置矩阵相似。两个矩阵若相似于同一对角矩阵,这两个矩阵相似。

在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与矩阵B相似,记为A~B。

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。定理的证明过程实际上已经给出了把方阵对角化的方法。

若矩阵可对角化,则可按下列步骤来实现:

求出全部的特征值;对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

(本文由龙门尚学南湖校区高中数学一对一辅导危老师编辑整理)

专属方案 教师多对一,专业定制

师资保障 中高考经验丰富,专业团队

心理咨询 心理疏导、激发斗志

金牌教研 科学规划,高效提分

优质服务 全程监督,及时反馈

龙门尚学校区:江夏校区光谷校区水果湖校区武汉中学校区青山校区吴家山校区崇仁路校区钟家村校区

咨询总线

版权所有 Copyright © 2021 武汉龙门尚学一对一辅导中心

鄂ICP备2021001515号